

Journal of Organometallic Chemistry 514 (1996) 169-175

Different coordination modes of the 1,1,1-tris(diphenylphosphinomethyl) ethane ligand in gold(I) and gold(III) complexes

Eduardo J. Fernández^a, M. Concepción Gimeno^b, Antonio Laguna^{b,*}, Mariano Laguna^b, José M. López-de-Luzuriaga^a, Elena Olmos^a

^a Departamento de Química, Universidad de La Rioja, 26001 Logroño, Spain

^b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain

Received 8 September 1995

Abstract

The synthesis of pentafluorophenyl mono- or poly-nuclear gold(I) and/or gold(II) complexes with the tridentate ligand $(PPh_2CH_2)_3CCH_3$ (tdppme) are described in different coordination modes not represented thus far. The reaction of the free phosphine with gold(I) or gold(III) derivatives in different molar ratios gives $[{Au(C_6F_5)}_3(\mu_3,\eta^3\text{-tdppme})]$, $[{Au(C_6F_5)}_2(\mu,\eta^2\text{-tdppme})]$, $[{Au(C_6F_5)}_2(\eta^2\text{-tdppme})]$ or $[Au(C_6F_5)_2(\eta^2\text{-tdppme})]$ Cl. The mononuclear derivatives further react with gold(I) or gold(III) species giving rise to d1- or tri-nuclear complexes which contain the triphosphine acting as a $\mu_3-\eta^3$, $\mu-\eta^2$, $\mu-\eta^3$ or η^2 ligand.

Keywords: Gold(I); Gold(II); 1,1,1-tris(diphenylphosphinomethyl)ethane complexes; Syntheses; Di- and tri-nuclear co.nplexes; ³¹P NMR spectra

1. Introduction

Although in recent years the chemistry of diphosphines, as bis(diphenylphosphino)methane [1,2] or its methanide (PPh₂)₂CH⁻ [3], has received a great deal of attention, and some examples of gold derivatives have been prepared [3–7], the chemistry of triphosphines is less developed. Thus, only a few complexes containing the ligand (PPh₂)₃CH or (PPh₂)₃C⁻ have been synthesized [8]. Some transition-metal complexes with (PPh₂CH₂)₃CCH₃ (tdppme) have been prepared, but in most of them the phosphine is acting as a tridentate-chelating ligand (Fig. 1(A)), as in [RuH(BH₄)(η^3 -tdppme)], [RuH₂(A sPh₃)(η^3 -tdppme)] [9] or [Ru(MeCN)₃(η^3 -tdppme)]²⁺ [10] and in the carbonyl derivatives *fac*-[Mn(CO)₃(η^3 -tdppme)]⁺ [11] or *fac*-[Mo(CO)₃(η^3 -tdppme)] [12]. The same coordination mode appears in the heteropolynuclear clusters [(η^3 -tdppme)MH₃(AuL)_n]ⁿ⁺ (M = Rh, Ir; n = 1, 2), [(η^3 -tdppme)-RuH₃ (AuL)_n]⁽ⁿ⁻¹⁾⁺ (n = 1, 2, 3) or [(η^3 -tdppme)

A few transition-metal complexes in which the triphosphine acts as bidentate-chelating (Fig. 1(B)) have been prepared: fac-[Mn(CO)₃Br(η^2 -tdppme)] [15] or [M(CO)₄(η^2 -tdppme)] (M = Cr, Mo, W) [16], and there is only one example of its coordination as a tridentate-bridging ligand (Fig. 1(C)) [17], in which the phosphine bridges three chlorogold(I) fragments.

In this paper we describe the synthesis of mono-, dior tri-nuclear gold(I) and/or gold(III) compounds con-

Fig. 1. Different coordination modes of the 1,1,1-tris(diphenylphosphinomethyl)ethane ligand.

 $RuH_2(AuL)_3$ ⁺ (L = PR₃ or AsR₃) [9,13,14], which contain Au-Rh, -Ir or -Ru bonds supported by bridging hydrides.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)06025-1

taining $(PPh_2CH_2)_3CCH_3$ in different coordination modes, some of which are unprecedented (Figs. 1(D)-1(F)).

2. Results and discussion

The reaction of (PPh₂CH₂)₃CCH₃ with $[Au(C_6F_6)(tht)]$ (1:3) (tht = tetrahydrothiophene) in dichloromethane leads to the synthesis of the trinuclear complex $[{Au(C_6F_5)}_3((PPh_2CH_2)_3CCH_3)]$ (1) (Scheme 1, reaction (i)). The same reaction in a different molar ratio (1:2) (Scheme 1, reaction (ii)) produces the displacement of the S-donor ligands for two phosphorus atoms, and the free phosphorus is oxidized by atmospheric oxygen, leading to the dinuclear complex $[{Au(C_6F_5)}_2 ({PPh_2CH_2}_2 C(CH_3)CH_2PPh_2O]]$ (2). All our trials to obtain the unoxidized phosphine derivative by using a nitrogen atmosphere and deoxygenated solvents were unsuccessful. Similarly, we could not prepare a gold(I) compound with the triphosphine as a monodentate ligand. Similar behaviour was previously observed by us in the reaction of $[Au(C_6F_5)(tht)]$ with bidentate phosphines [18].

Although it is not possible to prepare a monodentate derivative with gold(1), when a similar reaction is carried out with $[Au(C_6F_5)_3(tht)]$ and $(PPh_2CH_2)_3CCH_3$ in a molar ratio 1:1, the first monodentate compound described with this ligand, $[Au(C_6F_5)_3(PPh_2CH_2C (CH_3)(CH_2PPh_2)_2]]$ (3) is obtained and no oxidation of the phosphine is observed. A similar result was described for the reaction of $[Au(C_6F_5)_3(tht)]$ and $PPh_2CH_2PPh_2$ [18].

Complexes 1-3 are white solids, air- and moisturestable at room temperature and non-conducting in ace-

tone solutions. They are very soluble in chlorinated solvents, acetone and diethyl ether, and partially soluble in hexane (this could explain the low yields obtained). Moreover, the solubility of complex 3 in hexane is so high that it is necessary to evaporate the solvent to dryness to obtain the solid. The ³¹P{¹H} NMR spectrum of 1 shows one multiplet and in the spectra of 2 and 3 there are two resonances with different intensities. In no case was P-P coupling observed between the phosphorus of the triphosphine. The signals corresponding to the phosphorus trans to C_6F_5 always appear as multiplets because of their coupling with the fluorine atoms. In their ¹⁹F NMR spectra there are three resonances due to only one type of pentafluorophenyl group bonded to gold(I) (1, 2) or the characteristic pattern of $Au(C_6F_5)_3$ groups (3) [18]. The 'H NMR spectrum of 1 shows a singlet for the methyl protons and a doublet for the three methylene groups. In contrast, the 'H spectra of 2 and 3 show two different types of methylene proton, which appear as a doublet (2H) and an ABX system (4H), where X is a phosphorus atom. The mass spectra (FAB +) of 1 and 2 contain the parent ion at m/z =1716 (1, 17%) or 1368 (2, 12%); in both of them the base peak corresponds to the fragment $[M-C_6F_5]^+$. In the mass spectrum of 3 the parent ion appears protonated at m/z = 1323 (4%) and peaks due to the fragments $[M-(C_6F_5)_n]^+$ (n = 1, 2, 3) can also be observed.

The tetrahydrothiophene ligand in gold(I) complexes can be easily displaced by the free phosphorus atoms of $[Au(C_6F_5)_3[PPh_2CH_2C(CH_3)(CH_2PPh_2)_2]$ (3). Thus, its reaction with [AuCl(tht)] or $[Au(C_6F_5)(tht)]$ (1:2) results in the formation of the trinuclear gold(I)gold(III) derivatives $[Au(C_6F_5)_3[PPh_2CH_2C(CH_3)-(CH_2PPh_2)_2)(AuX)_2]$ (X = Cl (4), C₆F₅ (5)), in which

Scheme 1. $R = C_6F_3$; (i) 3[AuR(tht)]; (ii) 2[AuR(tht)]; (iii) [AuR₁(tht)]; (iv) 2[AuX(tht)]; (v) [AuL(tht)]ClO₄; (vi) 1/2[Au(tht)₂]ClO₄; (vii) 1/2[Au

the phosphine acts as a μ_3 - η^3 ligand and bridges different metallic fragments.

Complex 3 can also react with equimolar quantities of [AuL(tht)]ClO₄ (L = PPh₃, CH₂PPh₃) to obtain [Au(C₆F₅)₃[PPh₂CH₂C(CH₃)(CH₂PPh₂)₂]AuL]ClO₄ (L = PPh₃ (6), CH₂PPh₃ (7)), which contain (PPh₂CH₂)₃CCH₃ in a new coordination mode (μ - η ³) not represented to date. These two complexes are three-coordinated gold(I) derivatives, which is not the most commonly observed geometry for this centre, although some three- and four-coordinated gold(I) species have been described.

The reaction of **3** with $[Au(tht)_2]ClO_4$ (2:1) leads to the trinuclear derivative $[{Au(C_6F_5)_3}]PPh_2CH_2C(CH_3)-(CH_2PPh_2)_2]_2Au]ClO_4$ (8), in which a gold(I) centre bridges two molecules of **3**.

Complexes 4-8 are white air-stable solids, soluble in dichloromethane, chloroform and acetone, and partially soluble in diethyl ether and hexane (which causes their low yields). 4 and 5 are non-conducting in acetone solutions, and 6-8 behave as 1:1 electrolytes. The IR spectra of these compounds show the characteristic vibrations of tris(pentafluorophenyl)gold(III) groups [18], and in the spectra of 6-8 bands at 1100 (s, br) and 620 (m) cm⁻¹, due to the ClO₄⁻ anion [19] appear. The ³¹P{¹H} NMR spectra of 4 and 5 show two signals with different intensities, due to the phosphorus bonded to gold(I) (2P) or gold(III) (1P). A new resonance appears in the spectra of 6 and 7, corresponding to the L ligands. In the spectrum of complex 6, where $L = PPh_3$, the three-coordinated geometry of the gold(I) centre is easily proved, because of the presence of a doublet (28.1 ppm) and a triplet (45.3 ppm, $^{2}J(P-P) = 121.3$ Hz) for the different types of phosphorus bonded to gold(I). The ³¹P{¹H} NMR spectrum of 8 at room temperature shows a multiplet for the P-Au(III) atoms and a broad signal (ca. -7 ppm) due to the P-Au(I) atoms; however, on cooling to 223 K this signal splits into two multiplets centred at -11.4 and -3.1 ppm, which looks like an AA'BB' system, similar to those found for related systems Au₃(dppm), [20]. These spectra are consistent with a fluxional equilibrium at room temperature, which makes the phosphorus close to the gold(I) centre equivalent (Fig. 2).

The ¹⁹F NMR spectra for 4-8 show the characteristic pattern for an Au(C₆F₅)₃ fragment, and in complex 5 there are three more groups of signals for the two equivalent C₆F₅ groups bonded to gold(I). Their ¹H NMR spectra show three resonances assigned to the CH₃ (s), Au(III)-P-CH₂ (d) and Au(I)-P-CH₂ (m) protons. For complex 7, an additional doublet arising at the ylide ligand appears at 1.54 ppm (²J(H-P) = 8.9 Hz).

In all the mass spectra (FAB +) the cation fragment ion appears at m/z = 1751 (4, 17%), 2050 (5, 23%), 1781 (6, 75%), 1795 (7, 20%) and 2841 (8, 52%). They

 $\begin{bmatrix} R_{3}Au - P & P_{A} \\ P_{B}^{-}Au & P_{B}^{-} \\ P_{A}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{A}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{B}^{-} & P_{A} \\ P_{A}^{-} & P_$

Fig. 2. Fluxional behaviour of complex 8 in solution.

also present the peak due to the loss of an Au(C_6F_5)₃ group and those corresponding to the fragments [Au(tdppme)]⁺ and [Au₂(C_6F_5)(tdppme)]⁺ at m/z = 821 and 1185 respectively.

Taking into account that the reaction of $(PPh_2CH_2)_3$ -CCH₃ with $[Au(C_6F_5)_3(tht)]$ gives the monodentate complex 3, we tried to prepare a similar monodentate derivative through the reaction of $(PPh_2CH_2)_3CCH_3$ and $[Au(\mu-Cl)(C_6F_5)_2]_2$ (2:1). Surprisingly, this reaction produces not only the rupture of the Au-Cl-Au bridges, but also the displacement of the chloride by one phosphorus, leading to $[Au(C_6F_5)_2](PPh_2CH_2)_2$ -C(CH₃)CH₂PPh₂]Cl (9). It is necessary to work under nitrogen atmosphere, because in otherwise a partial oxidation of the free phosphorus takes place.

The free phosphorus can also displace tetrahydrothiophene from $[Au(C_6F_5)_3(tht)]$ to give the new dinuclear complex $[Au(C_6F_5)_2((PPh_2CH_2)_2C(CH_3)CH_2PPh_2]$ - $Au(C_6F_5)_3]Cl$ (10). The same cation with perchlorate (11) instead of chloride can be obtained by the reaction of 10 with an excess of $NaClO_4 \cdot H_2O$. Complexes 10 and 11 can also be synthesized from $[Au(C_6F_5)_3(PPh_2) CH_2C(CH_3)(CH_2PPh_2)_2]]$ (3) and $[Au(\mu-Cl)(C_6F_5)_2]_2$ or $[Au(C_6F_5)_2(OEt_2)_2]ClO_4$ in molar ratios of 2:1 or 1:1 respectively (see Scheme 1).

Complexes 9–11 were obtained as white solids. 9 is air-sensitive, but 10 and 11 are air-stable at room temperature. All of them behave as 1:1 electrolytes in acetone solutions and their IR spectra show the presence of C_6F_5 groups bonded to gold(III) centres. In the IR spectrum of 11 the characteristic vibrations of the $ClO_4^$ anion also appear. The ¹⁹F NMR spectrum of 9 contains five groups of signals with similar intensity, which means that the free rotation around the Au-C₆F₅ bonds is not possible. The ¹⁹F NMR spectra of 10 and 11 are more complicated, because of the presence of two more types of pentafluorophenyl ring with relative intensities 2:1. Moreover, some resonances are superposed, which makes their assignment more difficult.

The mass spectra of 9-11 show, as in the rest of the complexes, the $[M-X]^+$ (X = Cl or ClO₄) ion at m/z = 1155 (9, 60%), 1853 (10, 100%) and 1853 (11, 52%).

The spectrum of 9 also shows peaks due to the loss of one or two pentafluorophenyl groups at m/z = 988 or 821 respectively; also, the spectra of 10 and 11 show peaks at m/z = 1519, 1185 and 821 due to the ions $[Au_2(C_6F_5)_3(tdppme)]^+$, $[Au_2(C_6F_5)(tdppme)]^+$ and $[Au(tdppme)]^+$ respectively.

3. Experimental

Instrumentation and general experimental techniques were described previously [21]. The NMR spectra were recorded on Bruker ARX 300 in CDCl₃. Chemical shifts are cited relative to SiMe₄ (¹H), 85% H₃PO₄ (external ³¹P) and CFCl₃ (external ¹⁹F). Mass spectra were recorded on a VG Autospec, FAB technique, using 3-nitrobenzylalcohol as matrix. All the reactions were performed in air (except for complex 9) and at room temperature. (PPh₂CH₂)₃CCH₃ was purchased from Strem. The yields, melting points, elemental analyses and conductivities for the new complexes are listed in Table 1 and the NMR data in Table 2.

3.1. $[{Au(C_6F_5)}_3 {(PPh_2CH_2)_3CCH_3}]$ (1)

To a solution of $(PPh_2CH_2)_3CCH_3$ (0.062 g, 0.1 mmol) in dichloromethane (20 cm³) was added $[Au(C_6F_5)(tht)]$ [22] (0.136 g, 0.3 mmol) and the mixture was stirred for 30 min. Concentration of the solution to ca. 5 cm³ and addition of hexane (15 cm³) led to the precipitation of 1 as a white solid. Yield: 44%.

Table I			
Analytical	data	of	complexes
Camalas	No average (and a geo	to and the second	

NMR: ¹⁹F, δ -115.2 (m, 6F, o-F), -158.5 (t, 3F, p-F) (J(Fp-Fm) = 19.8 Hz) and -162.4 (m, 6F, m-F).

3.2. $[{Au(C_6F_5)}_2{(PPh_2CH_2)_2C(CH_3)CH_2PPh_2O}]$ (2)

To a dichloromethane solution (20 cm³) of $(PPh_2CH_2)_3CCH_3$ (0.094 g, 0.15 mmol) was added $[Au(C_6F_5)(tht)]$ [22] (0.136 g, 0.3 mmol). After 1 h stirring at room temperature the solution was evaporated to ca. 5 cm³. Addition of hexane (15 cm³) gave complex 2 as a white solid. Yield: 64%. NMR: ¹⁹F, δ - 115.6 (m, 4F, o-F), -158.5 (t, 2F, p-F) (J(Fp-Fm) = 19.6 Hz) and - 162.4 (m, 4F, m-F).

3.3. $[Au(C_6F_5)_3\{PPh_2CH_2C(CH_3)(CH_2PPh_2)_2\}]$ (3)

To a solution of $(PPh_2CH_2)_3CCH_3$ (0.125 g, 0.2 mmol) in dichloromethane (20 cm³) was added $[Au(C_6F_5)_3(tht)]$ [22] (0.157 g, 0.2 mmol) and the mixture was stirred for 30 min. Evaporation of the solvent to dryness gave complex 3 as a white solid. Yield: 92%. NMR: ¹⁹F, δ -119.8 (m, 4F, o-F), -156.7 (t, 2F, p-F) (J(Fp-Fm) = 19.8 Hz), -160.1 (m, 4F, m-F), -121.3 (m, 2F, o-F), -157.3 (t, 1F, p-F) (J(Fp-Fm) = 20.0 Hz) and -161.2 (m, 2F, m-F).

3.4. $[Au(C_6F_5)_3\{PPh_2CH_2C(CH_3)(CH_2PPh_2)_2\}$ - $(AuX)_2](X = Cl(4), C_6F_5(5))$

To a solution of 3 (0.132 g, 0.1 mmol) in 20 cm³ of dichloromethane was added [AuCl(tht)] [22] (0.064 g,

Complex	Yield	Analysis (%) 4	M.p.	1, b	lacatoria
	%	С	Н	(°Č)		
$1 \{(Au(C_6F_3))_3((PPh_2CH_2)_3CCH_3)\}$	44	41.6	2.45	95 °	31	
2 ((Au(C ₈ F ₄)) ₂ ((PPh ₂ CH ₂) ₂ (CH ₂)CH ₂ PPh ₂ O))	61	(41.3)	(2.3)			
	04	40.55 (46.55)	2.7 (2.85)	95 °	4	
\$ [Au(C ₆ F ₅) ₃ (PPh ₂ CH ₂ C(CH ₃)(CH ₂ PPh ₂) ₂)]	92	53.0	3.25	65	6	
4 [Au(C ₆ F ₃) ₃ (PPh ₂ CH ₂ C(CH ₃)(CH ₂ PPh ₂) ₂)(AuCl) ₂]	8)	(53,55) 39.7	(2.95)	150	-	
SIAU(C.E.) (PPh.CH. CCH. YCH. DDL.) VA.C. T.)		(39.65)	(2.2)	150	/	
0 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	39	42.0	2.0	125	10	
6 [Au(C ₃ F ₃) ₃ [PPh ₂ CH ₂ C(CH ₃)(CH ₂ PPh ₂) ₂ }Au(PPh ₃)]ClO ₄	42	49.15	2.85	140 °	129	
7 (Au(C+F3))(PPh)CH2C(CH2)(CH2PPh2)2)Au(CH2PPh2)CO	63	(49.15)	(2.9)		,	
	03	49.3 (49.45)	2.55 (2.95)	105	135	
B ((Au(C ₆ P ₅),(PPh ₂ CH ₂ CH ₂ C(CH ₃)(CH ₂ PPh ₂) ₂)) ₂ Au)ClO ₄	57	48.4	2.35	168	137	
9 {Au(C ₆ F ₅) ₂ {(PPh ₂ CH ₂) ₂ C(CH ₃)CH ₂ PPh ₂ }]Cl	90	(48.15) 53.4	(2.65)	130	70	
10 [Au(C. F.). ((PPh. CH.) C/CH.) CH. DH. LA (C. T.) 10		(53.45)	(3.3)	130	/0	
	84	45.2	2.15	120 °	75	
11 {Au(C ₆ F ₃) ₂ ((PPh ₂ CH ₂) ₂ C(CH ₃)CH ₂ PPh ₂ }Au(C ₆ F ₃) ₃)ClO ₄	86	43.15)	(2.1) 2.15	140	80	
		(43.65)	(2.0)			

* Calculated values are given in parentheses. ^b In acetone, Ω^{-1} cm² mol⁻¹. ^c With decomposition.

		ł
	Kes	
	mpley	
	f CO	
	ata c	
2	-0	

NMR data of complexes					1 (0)		
Complex	(8)(H ¹)d ₁ c				(Ø)H.		
	P-Au(I)	٩.	P-AuR ₃	P-AuR ₂	CH3	M-P-CH ₂	2CH ₂ - P
[{Au(C ₆ F ₅)} ₃ {(PPh ₂ CH ₂) ₃ CCH ₃ } X I)	24.0(m)				1.15(s)	3.29(d) [² /(HP)10.5]	
[{Au(C ₆ F ₅)} ₂ {(PPh ₂ CH ₂) ₂ C(CH ₃)CH ₂ PPh ₂ O}]{(2)	25.4(m)	26.9(s)			0.98(s)	2.95(d) [² J(HP)10.4]	3.53(ABX)
[Au(C ₆ F ₅) ₃ (PPh ₂ CH ₂ C(H ₃)(CH ₂ PPh ₂) ₂) X 3)		– 26.3(s)	6.2(m)		0.83(s)	2.86(d) [² /(HP)10.5]	2.21(ABX) [.J(AB)13.9]
[Au(C ₆ F ₅) ₃ [PPh ₂ CH ₂ C(CH ₃)C(H ₂ PPh ₂) ₂ [(AuCl) ₂][4)	16.2(s)		0.6(m)		1.32(s)	3.02(d) [² J(HP)11.3]	3.05(m)
[Au(C ₆ F ₅) ₃ [PPh ₂ CH ₂ C(H ₃)(CH ₂ PPh ₂) ₂]{Au(C ₆ F ₅)} ₂][5)	22.7(m)		0.0(m)		1.46(s)	2.44(d) [² /(HP)12.3]	3.27(m)
[Au(C ₆ F ₅) ₃ {PPh ₂ CH ₂ C(CH ₅ ,(CH ₂ PPh ₂) ₂ }Au(PPh ₃)]ClO ₄ (6)	28.1(d) [2.400)131.21	45.3(t)	0.6(m)		0.91(s)	3.26(d) 1 ² /(HP)12 1]	2.90(m)
{Au(C ₆ F ₅) ₃ {PPh ₂ CH ₂ C(CH ₃)(CH ₂ PPh ₂) ₂ }Au(CH ₂ PPh ₅)]ClO ₄ ² (7)	(C.171(TUC) 22.6(s)	31.6(s)	1.2(m)		0.81(s)	2.83(d) [² /(HP)10.5]	2.20(ABX) [./(AB)13.0]
[{Au(C ₆ F ₅) ₃ {PPh ₂ CH ₂ C(CH ₃)(CH ₂ PPh ₂) ₂ }}2Au]ClO ₄ (8)	– 7.2(AA'BB') ^b		– 0.5(m) ^b		0.85(s)	2.82(d) [² /(HP)11.2]	2.19(m)
[Au(C ₆ F ₅) ₂ {(PPh ₂ CH ₂) ₂ C(CH ₃)CH ₂ PPh ₂ }]CI(9)		– 29.7(s)		5.0(m)	0.45(s)	2.45(m)	3.62(m) 4 58(m)
[Au(C ₆ F ₅) ₂ {(PPh ₂ CH ₂) ₂ C(CH ₃)CH ₂ PPh ₂ }Au(C ₆ F ₅) ₃]C(f10)			- 0.6(m)	3.5(m)	0.81(s)	3.15(d) 1 ² /(HP)11 51	2.24(m) 3.72(m)
[Au(C ₆ F ₅) ₂ ((PPh ₂ CH ₂) ₂ C(CH ₃)CH ₂ PPh ₂)Au(C ₆ F ₅) ₃]ClO ₄ (11)			– 1.3(m)	3.3(m)	0.88(s)	3.50(d) [² J(HP)11.8]	2.31(m) 3.86(m)
Values in ppm; values of J in hertz. ² The ¹ H NMR of complex 7 als	to shows a doublet at 1	.54(d) [² J(HP)	8.9], due to the	vlide ligand. ^b]	Registered at	223 K.	

0.2 mmol) or $[Au(C_6F_5)(tht)]$ [22] (0.090 g, 0.2 mmol). After stirring for 2 h the solution was evaporated to ca. 5 cm³. Addition of hexane (20 cm³) led to the precipitation of the white solids 4 (yield: 81%) or 5 (yield: 39%). NMR: 4, ¹⁹F, δ -119.5 (m, 4F, o-F), -155.0 (t, 2F, p-F) (J(Fp-Fm) = 19.8 Hz), -159.1 (m, 4F, *m*-F), -121.7 (m, 2F, o-F), -156.3 (t, 1F, p-F) (J(Fp-Fm) = 19.9 Hz) and -160.7 (m, 2F, *m*-F); 5, ¹⁹F, δ -119.5 (m, 4F, o-F), -155.5 (t, 2F, p-F) (J(Fp-Fm) = 19.3 Hz), -159.3 (m, 4F, *m*-F), -121.6 (m, 2F, o-F), -156.3 (t, 1F, p-F) (J(Fp-Fm) = 20.0Hz), -160.6 (m, 2F, *m*-F), -115.0 (m, 4F, o-F), -159.0 (t, 2F, p-F) (J(Fp-Fm) = 20.1 Hz) and -162.6 (m, 4F, *m*-F).

3.5. $[Au(C_6F_5)_3\{PPh_2CH_2C(CH_3)(CH_2PPh_2)_2\}AuL]-CIO_4$ (L = PPh₃ (6), CH₂PPh₃ (7))

To a solution of 3 (0.132 g, 0.1 mmol) in 20 cm³ of dichloromethane was added [Au(PPh₃)(tht)]ClO₄ [23] (0.065 g, 0.1 mmol) or [Au(CH₂PPh₃)(tht)]ClO₄ [24] (0.066 g, 0.1 mmol) and the mixture was stirred for 1 h. Concentration of the solution to ca. 5 cm³ and addition of hexane (20 cm³) gave the white solids 6 (yield: 42%) or 7 (yield: 63%). NMR: 6, ¹⁹F, δ -119.4 (m, 4F, o-F), -155.9 (t, 2F, p-F) (J(Fp-Fm) = 19.9 Hz), -159.8 (m, 4F, m-F), -121.5 (m, 2F, o-F), -157.1 (t, 1F, p-F) (J(Fp-Fm) = 20.0 Hz) and -161.1 (m, 2F, m-F); 7, ¹⁹F, δ -119.4 (m, 4F, o-F), -156.1 (t, 2F, p-F) (J(Fp-Fm) = 19.5 Hz), -159.7 (m, 4F, m-F), -121.5 (m, 2F, o-F), -156.8 (t, 1F, p-F) (J(Fp-Fm)) = 19.8 Hz) and -160.9 (m, 2F, m-F).

3.6. $[{Au(C_6F_5)_3}(PPh_2CH_2C(CH_3)(CH_2PPh_2)_2)_2, Au]ClO_4$ (8)

To a solution of 3 (0.264 g, 0.2 mmol) in dichloromethane (20 cm³) was added [Au(tht)₂]ClO₄ [23] (0.047 g, 0.1 mmol). After stirring for 30 min the solution was concentrated to ca. 5 cm³. Addition of hexane led to the precipitation of 8 as a white solid. Yield: 57%. NMR: ¹⁹ F, δ - 119.5 (m, 8F, o-F), - 156.0 (t, 4F, p-F) (J(Fp-Fm) = 20.0 Hz), -159.9 (m, 8F, m-F), -121.4 (m, 4F, o-F), -157.0 (t, 2F, p-F) (J(Fp-Fm) = 20.0 Hz) and -161.2 (m, 4F, m-F).

3.7. [Au(C₆F₅)₂{(PPh₂CH₂)₂C(CH₃)CH₂PPh₂}]Cl (9)

To an anhydrous deoxygenated dichloromethane solution (20 cm³) of (PPh₂CH₂)₃CCH₃ (0.125 g, 0.2 mmol) and under nitrogen atmosphere was added [Au(μ -Cl)(C₆F₃)₂]₂ [25] (0.113 g, 0.1 mmol). The mixture was stirred for 1 h. Concentration of the solution to ca. 5 cm³ and addition of diethyl ether (20 cm³) gave complex 9 as a white solid. Yield: 90%. NMR: ¹⁹F, δ -116.7 (m, 2F, o-F), -118.8 (m, 2F, o-F), -156.1 ("t", 2F, p-F) (N(Fp-Fm) = 19.8 Hz), -158.9 (m, 2F, m-F) and -160.1 (m, 2F, m-F).

3.8. $[Au(C_6F_5)_2\{(PPh_2CH_2)_2C(CH_3)CH_2PPh_2\}Au-(C_6F_5)_3]Cl(10)$

(a) To a solution of 9 (0.119 g, 0.1 mmol) in dichloromethane (20 cm³) was added [Au(C₆F₅)₃(tht)] [22] (0.079 g, 0.1 mmol). After stirring for 30 min the solvent was evaporated to ca. 5 cm³. Addition of hexane (20 cm³) led to the precipitation of complex 10 as a white solid. Yield: 84%.

(b) To a dichloromethane solution (20 cm³) of **3** (0.264 g, 0.2 mmol) was added $[Au(\mu-Cl)(C_6F_5)_2]_2$ [25] (0.113 g, 0.1 mmol). The mixture was stirred for 1 h. Concentration of the solvent to ca. 5 cm³ and addition of hexane (20 cm³) gave complex **10** as a white solid. Yield: 64%. NMR: ¹⁹F, δ -116.5 (m, 2F, o-F), -121.9 (m, 2F, o-F), -155.2 ("t", 2F, p-F), -157.5 (m, 2F, m-F), -160.1 (m, 2F, m-F), -119.8 (m, 4F, o-F), -155.3 (t, 2F, p-F), -159.5 (m, 4F, m-F), -121.9 (m, 2F, o-F), -156.6 (t, 1F, p-F) (J(Fp-Fm)) = 18.9 Hz) and -160.8 (m, 2F, m-F).

3.9. $[Au(C_6F_5)_2\{(PPh_2CH_2)_2C(CH_3)CH_2PPh_2\}Au-(C_6F_5)_3]ClO_4$ (11)

(a) To a freshly prepared solution of $[Au-(C_6F_5)_2(OEt_2)_2]ClO_4$ in diethyl ether [26] (0.1 mmol) was added complex 3 (0.132 g, 0.1 mmol) and the mixture was stirred for 2 h. Concentration of the solution to ca. 5 cm³ and addition of hexane (20 cm³) gave 11 as a white solid. Yield: 80%.

(b) To a solution of 10 (0.189 g, 0.1 mmol) in dichloromethane (20 cm³) was added an excess of NaClO₄ · H₂O. After stirring for 2 h, the resulting mixture was filtered through a 1 cm layer of Celite and washed with dichloromethane (3×5 cm³). Concentration of the filtrate to ca. 5 cm³ and addition of hexane (20 cm³) gave 11 as a white solid. Yield: 86%. NMR: ¹⁹F, δ -115.7 (m, 2F, o-F), -121.9 (m, 2F, o-F), -154.8 (''t'', 2F, p-F) (N(Fp-Fm) = 20.0 Hz), -157.1 (m, 2F, m-F), -159.9 (m, 2F, m-F), -119.9 (m, 4F, o-F), -154.9 (t, 2F, p-F) (J(Fp-Fm) = 20.7 Hz), -159.2 (m, 4F, m-F), -121.9 (m, 2F, o-F), -156.5 (t, 1F, p-F) (J(Fp-Fm) = 19.9 Hz) and -160.7 (m, 2F, m-F).

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (PB94-0079) for financial support and the Instituto de Estudios Riojanos for a grant (E.O.).

References

- [1] R.J. Puddepnatt, Chem. Soc. Rev., 12 (1983) 99.
- [2] B. Chaudret, B. Delavaux and R. Poiblanc, Coord. Chem. Rev., 86 (1988) 193.
- [3] A. Laguna and M. Laguna, J. Organomet. Chem., 394 (1990) 743.
- [4] H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 110 (1977) 2751.
- [5] E.J. Fernández, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna and J.M. López-de-Luzuriaga, J. Chem. Soc. Dalton Trans., (1992) 3365.
- [6] E.J. Fernández, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna and J.M. López-de-Luzuriaga, Angew. Chem. Int. Ed. Engl., 33 (1994) 87.
- [7] E.J. Fernández, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna, J.M. López-de-Luzuriaga and M.A. Rodríguez, *Chem. Ber.*, 128 (1995) 121.
- [8] See for example: H.H. Karsch, A. Appelt and G. Müller, Angew. Chem. Int. Ed. Engl., 24 (1985) 402. H.H. Karsch, A. Appelt, G. Müller and J. Riede, Organometallics, 6 (1987) 316. J. Forniés, R. Navarro, M. Tomás and E.P. Urriolabeitia, J. Chem. Soc. Dalton Trans., (1994) 505. E.J. Fernández, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna and J.M. Lópezde-Luzuriaga, J. Chem. Soc. Dalton Trans., (1993) 3401. E.J. Fernández, M.C. Gimeno, P.G. Jones, B. Ahrens, A. Laguna, M. Laguna and J.M. López-de-Luzuriaga, J. Chem. Soc. Dalton Trans., (1994) 3487.
- [9] A. Albinati, L M. Venanzi and G. Wang, Inorg. Chem., 32 (1993) 3660.
- [10] L.F. Rhodes and L.M. Venanzi, Inorg. Chem., 26 (1987) 2692.
- [11] (a) J. Ellermann, H.A. Lindner and M. Moll, Chem. Ber., 112 (1979) 3441; (b) J. Ellermann and H.A. Lindner, Z. Naturforsch. Teil B:, 31 (1976) 1350.

- [12] O. Walter, T. Klein, G. Huttner and L. Zsolnai, J. Organomet. Chem., 458 (1993) 63.
- [13] A. Albirati, F. Demartin, P. Janser, L.F. Rhodes and L.M. Venanzi, J. Am. Chem. Soc., 111 (1989) 2115.
- [14] A. Albinati, J. Eckert, P. Hofmann, H. Rüegger and L.M. Venanzi, Inorg. Chem., 32 (1993) 2377.
- [15] S.T. Liu, H.E. Wang, L.M. Yiin, S.C. Tsai, K.J. Liu, Y.M. Wang, M.C. Cheng and S.M. Peng, Organometallics, 12 (1993) 2277.
- [16] J. Chatt, G.J. Leigh and N. Thankarajan, J. Organomet. Chem., 29 (1971) 105.
- [17] M.K. Cooper, K. Henrick, M. McPartlin and J.L. Latten, Inorg. Chim. Acta, 65 (1982) L185.
- [18] R. Usón, A. Laguna, M. Laguna, E.J. Fernández, P.G. Jones and G.M. Sheldrick, J. Chem. Soc. Dalton Trans., (1982) 1971 and unpublished results.
- [19] B.J. Hathaway and A.E. Underhill, J. Chem. Soc., (1961) 3091.
- [20] R. Usón, A. Laguna, M. Laguna, E.J. Fernández, M.D. Villacampa, P.G. Jones and G.M. Sheldrick, J. Chem. Soc. Dalton Trans., (1983) 1679.
- [21] A. Laguna, M. Laguna, J. Jiménez, F.J. Lahoz and E. Olmcs, J. Organomet. Chem., 435 (1992) 235.
- [22] R. Usón and A. Laguna, Organomet. Synth., 3 (1986) 322.
- [23] R. Usón, A. Laguna, M. Laguna, J. Jiménez, M.P. Gómez and A. Sainz, J. Chem. Soc. Dalton Trans., (1990) 3457.
- [24] C.J. Aguirre, M.C. Gimeno, A. Laguna, M. Laguna, J.M. López-de-Luzuriaga and F. Puente, *Inorg. Chim. Acta*, 208 (1993) 31.
- [25] R. Usón, A. Laguna, M. Laguna and A. Abad, J. Organomet. Chem., 249 (1983) 437.
- [26] R. Usón, A. Laguna and M.L. Arrese, Synth. React. Inorg., Met.-Org. Chem., 14 (1984) 557.